Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17043, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988234

RESUMEN

In the northern high latitudes, warmer spring temperatures generally lead to earlier leaf onsets, higher vegetation production, and enhanced spring carbon uptake. Yet, whether this positive linkage has diminished under climate change remains debated. Here, we used atmospheric CO2 measurements at Barrow (Alaska) during 1979-2020 to investigate the strength of temperature dependence of spring carbon uptake reflected by two indicators, spring zero-crossing date (SZC) and CO2 drawdown (SCC). We found a fall and rise in the interannual correlation of temperature with SZC and SCC (RSZC-T and RSCC-T ), showing a recent reversal of the previously reported weakening trend of RSZC-T and RSCC-T . We used a terrestrial biosphere model coupled with an atmospheric transport model to reproduce this fall and rise phenomenon and conducted factorial simulations to explore its potential causes. We found that a strong-weak-strong spatial synchrony of spring temperature anomalies per se has contributed to the fall and rise trend in RSZC-T and RSCC-T , despite an overall unbroken temperature control on net ecosystem CO2 fluxes at local scale. Our results provide an alternative explanation for the apparent drop of RSZC-T and RSCC-T during the late 1990s and 2000s, and suggest a continued positive linkage between spring carbon uptake and temperature during the past four decades. We thus caution the interpretation of apparent climate sensitivities of carbon cycle retrieved from spatially aggregated signals.


Asunto(s)
Carbono , Ecosistema , Temperatura , Dióxido de Carbono , Estaciones del Año , Ciclo del Carbono , Cambio Climático
2.
iScience ; 26(12): 108375, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025773

RESUMEN

Accurate assessment of coal mine methane (CMM) emissions is a prerequisite for defining baselines and assessing the effectiveness of mitigation measures. Such an endeavor is jeopardized, however, by large uncertainties in current CMM estimates. Here, we assimilated atmospheric methane column concentrations observed by the TROPOMI space borne instrument in a high-resolution regional inversion to estimate CMM emissions in Shanxi, a province representing 15% of the global coal production. The emissions are estimated to be 8.5 ± 0.6 and 8.6 ± 0.6 Tg CH4 yr-1 in 2019 and 2020, respectively, close to upper bound of current bottom-up estimates. Data from more than a thousand of individual mines indicate that our estimated emission factors increase significantly with coal mining depth at prefecture level, suggesting that ongoing deeper mining will increase CMM emission intensity. Our results show robustness of estimating CMM emissions utilizing TROPOMI images and highlight potential of monitoring methane leakages and emissions from satellites.

3.
Glob Chang Biol ; 29(15): 4412-4429, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277945

RESUMEN

Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.


Asunto(s)
Ecosistema , Microbiota , Carbono/metabolismo , Suelo , Microbiología del Suelo , Cambio Climático , Nitrógeno/análisis
4.
iScience ; 26(6): 106878, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37332604

RESUMEN

To control the atmospheric methane concentration for Paris Agreement and Global Methane Pledge, it is urgent to elucidate global methane budget, in the context of dangerous high growth rate of atmospheric methane concentration in the past three years (2020-2022). Interdisciplinary research can definitely help answer the open questions about methane budget, as some examples shown in this Special Issue on "Methane emissions, sinks, and mitigation".

5.
Nat Commun ; 14(1): 3065, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244896

RESUMEN

Denitrification and leaching nitrogen (N) losses are poorly constrained in Earth System Models (ESMs). Here, we produce a global map of natural soil 15N abundance and quantify soil denitrification N loss for global natural ecosystems using an isotope-benchmarking method. We show an overestimation of denitrification by almost two times in the 13 ESMs of the Sixth Phase Coupled Model Intercomparison Project (CMIP6, 73 ± 31 Tg N yr-1), compared with our estimate of 38 ± 11 Tg N yr-1, which is rooted in isotope mass balance. Moreover, we find a negative correlation between the sensitivity of plant production to rising carbon dioxide (CO2) concentration and denitrification in boreal regions, revealing that overestimated denitrification in ESMs would translate to an exaggeration of N limitation on the responses of plant growth to elevated CO2. Our study highlights the need of improving the representation of the denitrification in ESMs and better assessing the effects of terrestrial ecosystems on CO2 mitigation.

7.
Sci Total Environ ; 864: 160971, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535487

RESUMEN

The projection of excess mortality due to diurnal temperature range (DTR) in future has not been evaluated yet in China. Based on daily cause-specific mortality data from 266 cities in China, this study aimed to examine the association between DTR and mortality, which help project the future mortality burden attributable to DTR by considering the modification effects of altitude and population migration. We first found that every 10 °C increase in the DTR would result in a 3.3 % (95 % confidence interval: 2.6 %-4.1 %) excess risk of non-accidental mortality. The unit risk of DTR-associated cause-specific mortality at moderate or high altitudes was significantly lower than at lower altitudes, especially for cardiovascular disease. Subsequently, DTR-associated excess mortality in 2017 in China was 233,154 deaths (with a population-weighted attributable fraction of 2.9 %). Furthermore, we projected DTR-attributable additional mortality in the future, with the associated mortalities to be 221,860 deaths in 2050-2059 (2050s) and 132,305 deaths in 2090-2099 (2090s), under the SSP1-2.6 scenario. Meanwhile, the regional inequalities were exacerbated by 18 % in 2050s and 13 % in 2090s when considering the modification effects of city altitude. Future population migration would increase excess mortality in most areas in central and southern China, and reduce the disease burden in most areas in eastern, western, and northern China. Our findings underpinned that regional strategies should be adopted to mitigate excess mortality attributable to global climate change.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Temperatura , China/epidemiología , Ciudades , Cambio Climático , Calor , Mortalidad
8.
Environ Sci Technol ; 57(4): 1576-1583, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36516430

RESUMEN

Small ponds are important methane (CH4) sources. However, current estimates of CH4 emissions from aquaculture ponds are largely uncertain due to data paucity, especially in China─the largest aquaculture producer in the world. Here, we present a nationwide metadata analysis with a database of 55 field observations to examine total CH4 emissions from aquaculture ponds in China. We found that the annual CH4 fluxes from aquaculture ponds are much larger than those from reservoirs and lakes. The total CH4 emission from aquaculture ponds is 1.60 ± 0.62 Tg CH4 yr-1, with an average growth rate of ∼0.03 Tg CH4 yr-2 during the period 2008-2019. Compared with global major protein-producing livestocks, aquaculture species have a lower (63%) emission intensity, defined by the amount of CH4 emitted per unit of animal proteins. Our study highlights the essential contribution of China's aquaculture ponds to national CH4 emissions and the lower environmental cost of the aquaculture sector for future animal protein production. More field measurements with multi-scale observations are urgently needed to reduce the uncertainty of CH4 emissions from aquaculture ponds.


Asunto(s)
Metano , Estanques , Animales , Metano/análisis , Acuicultura , Lagos , China
9.
Nature ; 612(7940): 477-482, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517714

RESUMEN

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.


Asunto(s)
Atmósfera , Metano , Humedales , Humanos , Control de Enfermedades Transmisibles/estadística & datos numéricos , COVID-19/epidemiología , Metano/análisis , Ozono/análisis , Atmósfera/química , Actividades Humanas/estadística & datos numéricos , Factores de Tiempo , Historia del Siglo XXI , Temperatura , Humedad , Óxidos de Nitrógeno/análisis
10.
Commun Biol ; 5(1): 1311, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513752

RESUMEN

Extinction debt describes the time-lagged process of species extinction, which usually requires dozens to hundreds of years to be paid off. However, due to the lack of long-term habitat data, it is indeterminate how strong the signal of extinction debts is at the global scale and when the debts started. Here, by compiling the geographical distributions of 6120 reptiles, 6047 amphibians, and 4278 mammals and correlating them with annual forest cover data from 1500 to 1992, we show that the beginning of the Second Industrial Revolution (the mid-19th century) was the earliest signal of cumulative extinction debts for global forest-dwelling vertebrate groups. More importantly, the impact of global protected areas on mitigating accumulated vertebrate extinction debt is not as immediate as that of mitigating reduced forest cover but rather suffers from pronounced time-lag effects. As the disequilibrium of vertebrate richness and forested habitat is currently taking place, preventive actions should be taken to promote a well-balanced status among forest restoration, protected areas, and biodiversity conservation to slow the accumulating debts for global forest-dwelling vertebrates.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Animales , Biodiversidad , Bosques , Vertebrados , Mamíferos
11.
Proc Natl Acad Sci U S A ; 119(41): e2202742119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191196

RESUMEN

China is set to actively reduce its methane emissions in the coming decade. A comprehensive evaluation of the current situation can provide a reference point for tracking the country's future progress. Here, using satellite and surface observations, we quantify China's methane emissions during 2010-2017. Including newly available data from a surface network across China greatly improves our ability to constrain emissions at subnational and sectoral levels. Our results show that recent changes in China's methane emissions are linked to energy, agricultural, and environmental policies. We find contrasting methane emission trends in different regions attributed to coal mining, reflecting region-dependent responses to China's energy policy of closing small coal mines (decreases in Southwest) and consolidating large coal mines (increases in North). Coordinated production of coalbed methane and coal in southern Shanxi effectively decreases methane emissions, despite increased coal production there. We also detect unexpected increases from rice cultivation over East and Central China, which is contributed by enhanced rates of crop-residue application, a factor not accounted for in current inventories. Our work identifies policy drivers of recent changes in China's methane emissions, providing input to formulating methane policy toward its climate goal.


Asunto(s)
Carbón Mineral , Metano , Agricultura , China , Metano/análisis , Políticas
12.
Nat Commun ; 13(1): 5156, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056046

RESUMEN

How lake temperatures across large geographic regions are responding to widespread alterations in ice phenology (i.e., the timing of seasonal ice formation and loss) remains unclear. Here, we analyse satellite data and global-scale simulations to investigate the contribution of long-term variations in the seasonality of lake ice to surface water temperature trends across the Northern Hemisphere. Our analysis suggests a widespread excess lake surface warming during the months of ice-off which is, on average, 1.4 times that calculated during the open-water season. This excess warming is influenced predominantly by an 8-day advancement in the average timing of ice break-up from 1979 to 2020. Until the permanent loss of lake ice in the future, excess lake warming may be further amplified due to projected future alterations in lake ice phenology. Excess lake warming will likely alter within-lake physical and biogeochemical processes with numerous implications for lake ecosystems.


Asunto(s)
Hielo , Lagos , Ecosistema , Estaciones del Año , Temperatura , Agua
13.
Glob Chang Biol ; 28(24): 7161-7163, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36070189

RESUMEN

Multiple linear regression (MLR) is widely used to attribute causes of the interannual variability (IAV) of land carbon uptake, yet, parameter estimation in MLR can be problematic if the predictors are strongly inter-correlated. Recently, Humphrey et al., (2021) used MLR method to conclude that the indirect effect of soil moisture (SM) via land-atmosphere coupling, rather than direct effect of SM on photosynthesis and respiration, controls the IAV of NBP. Here we assess the validity of MLR and find that the direct effect of SM on NBP-IAV is greatly underestimated by MLR, which may undermine their main conclusion.


Asunto(s)
Secuestro de Carbono , Suelo , Ciclo del Carbono , Dióxido de Carbono/análisis , Ecosistema , Carbono
14.
Sci Data ; 9(1): 141, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365677

RESUMEN

Plantation is an important land use type that differs from natural forests and affects the economy and the environment. Tree age is one of the key factors used to quantify the impact of plantations. However, there is a lack of datasets explicitly documenting the planting years of global plantations. Here we used time-series Landsat archive from 1982 to 2020 and the LandTrendr algorithm to generate global maps of planting years based on the global plantation extent products in Google Earth Engine (GEE) platform. The datasets developed in this study are in a GeoTIFF format with 30-meter spatial resolution by recording gridded specie types and planting years of global plantations. The derived dataset could be used for yield prediction of tree crops and social and ecological cost-benefit analysis of plantations.

15.
Nat Commun ; 13(1): 1967, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413953

RESUMEN

Trade-offs between tree planting programs and wetland conservation are unclear. Here, we employ satellite-derived inundation data and a process-based land surface model (ORCHIDEE-Hillslope) to investigate the impacts of tree planting on wetland dynamics in China for 2000-2016 and the potential impacts of near-term tree planting activities for 2017-2035. We find that 160,000-190,000 km2 (25.3-25.6%) of historical tree planting over wetland grid cells has resulted in 1,300-1,500 km2 (0.3-0.4%) net wetland loss. Compared to moist southern regions, the dry northern and western regions show a much higher sensitivity of wetland reduction to tree planting. With most protected wetlands in China located in the drier northern and western basins, continuing tree planting scenarios are projected to lead to a > 10% wetland loss relative to 2000 across 4-8 out of 38 national wetland nature reserves. Our work shows how spatial optimization can help the balance of tree planting and wetland conservation targets.


Asunto(s)
Conservación de los Recursos Naturales , Humedales , China , Conservación de los Recursos Naturales/métodos , Ecosistema , Árboles
16.
Nat Commun ; 13(1): 880, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169118

RESUMEN

The impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired 15N-labelling experiments in temperate, subtropical, and tropical forests. Results show that total ecosystem N retention is similar for ammonium and nitrate, but plants take up more labelled nitrate ([Formula: see text]%) ([Formula: see text]) than ammonium ([Formula: see text]%) while soils retain more ammonium ([Formula: see text]%) than nitrate ([Formula: see text]%). We estimate that the N deposition-induced C sink in forests in the 2010s  is [Formula: see text] Pg C yr-1, higher than previous estimates because of a larger role for oxidized N and greater rates of global N deposition.


Asunto(s)
Compuestos de Amonio/análisis , Secuestro de Carbono/fisiología , Restauración y Remediación Ambiental , Bosques , Nitratos/análisis , Árboles/metabolismo , Ambiente , Isótopos de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Suelo/química
17.
Sci Total Environ ; 817: 153044, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35038527

RESUMEN

Black carbon (BC) contributes to patterns of Arctic warming, yet the initial hydrophilic ratio (IHR) of BC emitted from various sources and its impact on Arctic BC remain uncertain. With the use of a tagged tracer method of BC implemented in the global chemistry transport model GEOS-Chem, IHRs were partitioned into 7 BC combustion source categories according to the PKU-BC-v2 emission inventory. The results show that as the IHR increased, the concentration of BC decreased globally. The impact on Arctic BC was mainly reflected in the vertical profile and the burden rather than at the surface. Specifically, the greatest impact of IHR on Arctic BC appeared in summer, with the largest perturbation appearing at an altitude of approximately 600 hPa, reaching 8%. This change in BC vertical profile was mainly caused by the IHR change of wildfire combustion in Russia (44%) and Canada (51%), and the emissions from these two regions were also the two most important contributors to the BC concentration and burden in the middle and lower Arctic atmosphere in summer. In the other three seasons, anthropogenic combustion sources (oil, coal, and biomass) in East Asia, Russia, and Europe accounted for 19-40%, 14-28%, and 7-23%, respectively, of the monthly BC burden. Emissions from Russia were the most important contributor (27-43%) to the monthly BC surface concentration. Due to the large adjustment in IHR from 20% to 70%, biomass burning in Europe was shown to be the dominant contributor causing both burden (39%) and surface concentration (88%) changes in all seasons except summer.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , Hollín/análisis
18.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34553464

RESUMEN

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Asunto(s)
Atmósfera , Metano , Animales , China , Ganado , Metano/análisis , Océanos y Mares
19.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34691569

RESUMEN

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

20.
Sci Adv ; 7(23)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34088663

RESUMEN

When a peatland is drained and cultivated, it behaves as a notable source of CO2 However, we lack temporally and spatially explicit estimates of carbon losses from cultivated peatlands. Using a process-based land surface model that explicitly includes representation of peatland processes, we estimate that northern peatlands converted to croplands emitted 72 Pg C over 850-2010, with 45% of this source having occurred before 1750. This source surpassed the carbon accumulation by high-latitude undisturbed peatlands (36 to 47 Pg C). Carbon losses from the cultivation of northern peatlands are omitted in previous land-use emission assessments. Adding this ignored historical land-use emission implies an 18% larger terrestrial carbon storage since 1750 to close the historical global carbon budget. We also show that carbon emission per unit area decrease with time since drainage, suggesting that time since drainage should be accounted for in inventories to refine land-use emissions from cultivated peatlands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...